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SURVEILLANCE PROGRAMS FOR

DETERIORATiT', LOTS IN STORAGE

by

Frederick S. Hillier

1. Introduction.

The military and many civilian organizations require that a suffi-

cient supply of materials be in storage at any one time to meet certain

emergency needs that may arise. The fulfillment of this requirement is

primarily a procurement problem. However, the procurement of an

adequate supply of materials alone does not necessarily guarantee an

adequate supply of usable materials when the need for them arises.

Their deterioration in storage may render them unusable. Despite all

precautions, at least a small rate of deterioration is inevitable for

all items in storage. It is therefore essential that a systematic

program for the surveillance of such stored items be maintained in order

to insure that the supply of usable items is always adequate.

The development of such surveillance programs has received very

little attention in the literature. Derman and Solcaon [1] studied the

quality of lots in storage over time when these lots are periodically

subjected to standard acceptance sampling plans. Ireson [2] discussed

administrative aspects of surveillance programs. Savage [3] briefly

examined when a piece of equipment reserved for emergency use should be

withdrawn from storage for repair; this paper considered in general

terms the case where the relevant costs are those for regular repair and

for repair when the emergency occurs and both these costs are known



deterministic functions of the time elapsed since the last repair.

However, no comprehensive investigation has yet been reported regarding

the appropriate time for corrective action to compensate for the deteri-

orating quality of a lot in storage, given the cost of appropriate

corrective action and the cost of an imperfect lot when the emergency

occurs as functions of the number of defective items in the lot. This

paper presents the results of such an investigation.

The assumption made about the lot in storage is that the storage

life of each item, i.e., the time in storage until becoming defective,

has a common known exponential distribution. Of course, this condition

is not always met. However, the exponential distribution of life has

been demonstrated and justified on empirical and theoretical grounds for

numerous types of items. Furthermore, the particular exponential distri-

bution can often be estimated by experimentation or from prior experience

with the same product. Thus, this formulation will often become appli-

cable at some time after the initiation of a continuing surveillance

program for a given product.

It is also assumed that the time until the emergency necessitating

the use of the lot has a known exponential distribution. This distri-

bution should ordinarily be the appropriate one since it implies the

usual situation that the emergency is a random event in time. Examples

of such emergencies that might be of interest are the beginning of a

war, a natural disaster, the breakdown or failure of certain equipment,

the need to enter a fallout shelter, a rush order, the rejection of

regular material, and the cancellation of needed deliveries by a supplier.

With the information available regarding the quality of the lot over
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time, it is no longer necessary to sample the lot periodically to esti-

mate its quality in order to determine if any corrective action is

advisable. It is now practical to instead select the future time when

the deteriorating quality of the lot will justify corrective action, if

the emergency has not occurred yet. This corrective action might involve

inspecting the entire lot and replacing or repairing those items found

to be deficient. However, if inspection is sufficiently costly, or if

it involves destructive testing, or if the future quality of the

non-defectives in the lot is mistrusted-despite the assumption of an

exponential storage life- the proper action would be to immediately

replace or repair the entire lot. The formulation presented here permits

both of these alternatives.

In the absence of any surveillance sampling, there remain only two

types of costs that are not independent of the surveillance program

selected. One type is the cost of taking corrective action periodically

until the emergency occurs. Its expected value tends to decrease as the

time interval between successive corrective actions is increased. The

second type is the cost or the imputed cost incurred because of the

defective items in the lot when the emergency occurs. The expected

value of this type of cost increases as the time between corrective

actions is increased. Therefore, this time needs to be carefully

selected so as to obtain the proper balance between these two types of

costs. To do so requires that the cost of corrective action and the

cost of using an imperfect lot, each as a function of the number of the

defectives in the lot, be known.

The problem considered here is the determination of the time between
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corrective actions which minimizes the total expected cost from the

beginning of the program until the emergency is met. Section 2 presents

the formulation of the problem and the operating characteristics of a

given surveillance program. The critical equation is derived for general

cost functions in Section 3. It is then developed and simplified for

specific cost functions of interest in the following two sections. These

results are illustrated with an example in Section 6. The discussion of

the results in Section 7 includes a suggestion of how they can also be

applied in the initial absence of information regarding the distribution

of storage life. The final section summarizes the conclusions.

2. Formulation of the Problem.

A lot composed of N items is being held in storage. It will be

used only if certain emergency needs arise, as in the stockpiling of

vital material. The probability density function of the time until such

an emergency arises, g(t), is given by

(0 , if t < 0

g(t) =

6e-et if t > 0,

where e > 0 and is known. The quality of the lot can be expected to

deteriorate with age. At periodic intervals, corrective action is taken.

This corrective action consists either of replacing the entire lot or of

inspecting each item in the lot and either replacing or repairing those

items found to be defective. The known cost of taking corrective action
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when there are n defective items in the lot is R(n). For each item

in the lot, the cumulative density function of the time elapsed since

the last corrective action until the item becomes defective, F(t), is

given by

F(t) = 1 - e -(t+t)

4Lt
where 1 - e is the known initial probability of being defective

and 1' has a known positive value. Thus, at time t, the defective

vs. non-defective status of the respective items can be considered as

independent Bernoulli trials. Hence, the probability that the lot

contains n defective items at time t, the time elapsed since the

last corrective action, is given by

{ J (l - e 4L(t+t 0 ))n (e..(t+tol N-n if n = 0, 1, 2, ... N

Pn(t) =

0 otherwise.

The known cost or imputed cost resulting from the presence of n

defective items in the lot at the time the emergency arises is D(n).

The objective is to determine the value of t, the elapsed time

between successive corrective actions, which minimizes the total

expected cost from the beginning of the program until the emergency

is met.



3. Analysis

Let T = (tl, t 2 , ... ) be the sequence of positive numbers such

that corrective action is taken at the times tl, tI + t 2 , ... , unless

the emergency intervenes. Let the random variable E be the time at

which the emergency occurs. Thus, corrective action is taken at the

m m m+l
times tl, t1 + t 2 , ... , ' ti, where . t < E < t i

i~l ~l am!•uni=l

The total cost from the beginning of the progr until the emergency

is met is

m
C(T) = • R(ni) + D(nE)

where nl, n2) ... ,n m are the number of defectives in the lot at times

m
tl, tI + t 2 , ... , Ej ti, and nE is the number of defectives in the

i=l

lot at time E. Let C0(T) be the cost from the beginning of the

program until and including the time t 1 . Let C1 (T) be the cost of

the program after the time t 1 . Therefore,

C(T) = C0 (T) + C1 (T)

Since

C (Tim = 0) = 0

C1 (T) = C1 (Tim > 0) P(m > 0)

It is assumed that the program is begun immediately after corrective
action has been taken. Corrective action may be defined to include
the initial placement of the lot in storage if the effect on the
quality of the lot is indistinguishable.
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Hence,

E(C(T)) = E(C (T) ) + E(C 1 (TIm > 0) ) P(m > 0)

Iet

S1 =(TIE(C(T)) = inf E(C(X)), TeS 2 ]
XES 2

where

S 2 = ((tl,9 t2) ... ) It i > 0, 1 = 1, 2, .. •

It is assumed that S1 is not empty, i. e., that there exists a

solution to the problem. The objective is to find a solution by

determining an element of SI.

Notice that

-et

P(m > 0) = P(E > tl) = e

Therefore, forming the expectation for C (T), E(C(T)) becomes

t N et
E(C(T)) = ( 1 D(j ) P (t))ee dt

I J=o

+ e R(J)P (tI + e E(CI(TIm >0)
J=



Due to the nature of the exponential distribution, i. e.,

P(E > t1 + tIE > tI) = P(E > t) ,

and also because the quality of the lot after t1  is independent of

its quality before tl, it is clear that C (Tim > 0), and therefore

E(C (TIm > 0)), is independent of t . Hence, it is evident that

E(C(T)) is a function of t and E(C (Tim > 0), where ECI (Tim > 0)

is a function of t 2, t3  ... , and that if (t 1 , t 2, t 3, ... )

minimizes EtC(T)), i.e., if (tl, t 2 , t 3 , ... )S1, then

(tl, t 2 , t 3 , ... )minimizes EtCI(Tim > 0)). Therefore, if
I I

(tl, t 2 , t 3 , ... )S1 then if (tl, t 2 , t 3, ... ) also minimizes

(Tim 0)), (tl, t 2 , tI, )cS It also follows from the nature

of the exponential distribution and the fact that the quality of the lot

depends only on the time elapsed since the last corrective action that

if (tl, t 2 , t3, ... )ES1 , then (tl, t1, t 2 , ... ) minimizes

EC I(Tim > 0)). Therefore if (t t 2 ,, ... )ESl, then

(t 1 , t1, t 2 , ... )ES 1 . By repeated application of this argument, it

follows that if (tl, t 2 , t3, ... )ES1 , then (tl, tl, tl, ... )cS1.

The important conclusion is that one solution to this problem is of the

form that the time between corrective actions is always the same. This

is the solution that will be sought. Thus denoting this constant

positive time between consecutive corrective actions by tl, the

problem now consists of determining the optimum value of t 1 .

It will prove very useful to notice that, for this newly defined

problem, EtC(T)) = EtC (Tim > 0)). Since T is now restricted to be
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of the form (tl, tl, t1, ... ) where t, > 0, it will be more

meaningful to now denote E(C(T)) by E. ýt ' The expression for the

total expected cost can now be written as

E(C(tl)J = t ( D(n) Pn(t))eedt
0 n=o

+ e){2 R(n)Pn(t 1 ) + E(C(t 1 )l]

Therefore,

(1e E(C(t1  t( D(n) Pn(t))edt

+ E[Ctt1)N R(n)P (t

S-n-
n=o

so that

rt N -et -etI N
EfC(tl)) 1 1 e t (1 D(n)Pn(t))ee dt + e 1 R(n)P n(t1

l-e 1  n=o n=o

For the particular Pn(t) function for this problem, specified earlier,

the conditions for Liebnitz's Rule are met and the derivative exists.

Setting the derivative equal to zero,
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N -et
Zt . D(n)P(t 1 )ee 9ntNetd

-no n e et1 tlzt

etI I (N ) -etI

t gno R(n)Pn(tl) -ee r R(n)P (tl)
1 -t1nOt1Ino

1-e

ee-6t 1  -et1 N

- L - 2J e E R(n)Pn(tI)

=0

Cancelling common terms, the critical equation becomes

[e nXo D(n)Pn(t) + E R(n)P (tl)) o R(n)Pn(t]

SD(n)Pn(t): eee dt + e Z R(n)P n(tI)

n=o n-o

10



Simplifying slightly,

-Otl d (n)n 1t
Se X D(n)Pn(tl) +1 dt1 ZR(n)Pn(tl)

n=o 1=o

otl (oN -et N
ZD(n)Pn( ee dt + Z R(n)Pn(t 1 )

Jo on=o

It is apparent that this critical equation would be exceedingly

difficult to solve for t for most D(n) and R(n) functions.

But if one were unable to solve this equation, the analysis would

have little practical value. Fortunately, greatly simplified

equations quite amenable to solution can be obtained for certain D(n)

and R(n) functions of great practical interest. This is especially

true where D(n) and R(n) are linear functions of n. This case

is studied and a comprehensive set of solutions graphed in the next

section. The following section then studies the case where R(n) is

a linear function and D(n) is a certain quadratic function.
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4. Solution for Linear D(n) and R(n) Functions

Assume that D(n) = CD*fn. In other words, the cost of having

defectives in the lot when the emergency occurs is proportional to n,

the number of those defectives. This would seem to be the appropriate

D(n) function for many situations. It should also serve as a suitable

approximation for many more situations.

Assume that R(n) = K + CR.n, where K > 0. In other words, the

cost of taking corrective action-whether it be the replacement of the

entire lot, or more likely the screening of the lot and the repair or

replacement of defective items - consists of a fixed cost plus a certain

cost for each defective item in the lot. This would appear to be the

appropriate R(n) function, or at least a reasonable approximation,

for practically every situation. The fixed cost could be the red tape

cost of ordering or producing new items plus the cost of inspecting the

lot. The cost for each defective item could be the cost associated only

with replacing or repairing that item. If the lot is automatically

replaced, the entire cost is K.

When performing the summation operations for this case, it is

crucial to notice that, for fixed t, the Pn(t) probabilities describe

a binomial distribution with parameter (l-e-ý(t+t°)), and that the
4L (t+to0) N

mean of this distribution is N(l-e ). The S D(n)Pn(t) and

N 
n=o

E R(n)Pn(t) summations are analogous to finding this mean.
n=o

Thus,

12



i

N N N -,(t+t ))n -I.(t+t ))N-n
Z D(n)Pn(t) = C D'.n( n) (1-e (e

n=o n=o

-U (t+to)
= CD.N(l-e 0)

and

N N -e±(t+t ) -n (t+t ))N-n
Z R(n)P n(t) = E (K+CR'n) (n) (l-e (e

n=o n=o

S'(t+to)
= K + C R'N(I-e ) 0

Therefore, after the indicated differentiation and integration operations

are performed, the critical equation becomes

[ 0et1 ] [CD.N (i-e'(tl+to)) + C We41+t0)]

N e i eto (letl(v+e) -+ ( (t+tO)
C D'Nl-eet " e 0 -e [K+CR'N (l-e

13



Combining like terms and simplifying,

-lG'8tl) "4Ltl ( CR@-I ) .*"-tl "tl(•+e )
1 1-)e -CD' N + CR Ne -1 CD.N +e

4to [KC..D -9t (•
K+e -C Ne oI.L+6)J

Simplifying further and dividing through by N,

e [(-CD +-+-CR) - (CD + -- + CD e e-9tl

9t e • )o I [K o R C@ 0 (f
[N R - De ýL-

Finally,

-~tl [( ++-CD + + C) +e CD -D CR) e-tl

= e 0  + CR - CDe

14



In order to simplify notation, let

D = elt [ + CR CDe

-C ,ý+e C

"A D + if D 0 ;D

B= T+e D e R if D 0

Thus, assuming D A 0, the critical equation can now be written as

e-Lt 1 [A + Bet =1.

Notice that

B =-(--• A.

Therefore, the most convenient form of the critical equation is

Ae i[-1 e tl=1

Notice that it has a positive solution only if A > 1. While an

explicit solution for t1  is not available, this critical equation can

be easily solved for t by numerical methods. This is especially true

15



since

4Lt

= ~ + Ai. -+ e~l

< 0, for t > 0, A > 0

Thus, if A > the critical equation has a unique positive solution;

otherwise, it has no positive root. Furthermore, because the left side

of the equation strictly decreases as t increases, t1  can be

estimated as closely as desired by determining lower and upper bounds

to t 1  by trial and error.

Figures 4.1, 4.2, and 4.3 present a comprehensive set of solutions

of the critical equation. For the particular values of (A - and

(-) of interest, the value of 4t and therefore tI can be closely

estimated by interpolating between the given level curves.
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It is of course true that being a positive root of the critical

equation is a necessary, but not sufficient, condition for minimizing

E(C(t ). The sufficient condition, that

d-• E(EC(tl)])> 0

dt 2
11

will now be investigated. Assume that A > --- , D A 0.

Tracing through the derivation of the critical equation, it is

clear that

-eetl ( ri~ ]et -lt

d E(C(tl)} = D ee 2 AeI [1lý1 e j -e t Ne 0

dt1 ýl-e 2t 1tl -(+

Therefore,

d2 E t ) = D (e-t1 l e' 1 ] [e t 0

dt (1te-tl) I II

1 2 2 -Oet -etI -etl -tle et - Itr -etl]

1 ( -ee 4 )1e ] ..lJ Ne

Assume that t1  is a positive root of the critical equation. Hence,

the second term vanishes. Additionally,
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ee ( l4e 1 [1- [ie ti 1 Ne o < 0

Therefore,

1

if and only if D < 0. In other words, if

K +C<Ce-M 0.t
N R D o Y

then the t which is the positive root of the critical equation

minimizes E(C(t1 )). This is further verified by the fact that, for

this case,

-iE(C(tl)} < 0 for 0 < t < t
dt 1  1' 1

It remains to investigate the other cases. If D > 0 it becomes

quickly clear that this implies A <--., which in turn implies

d IE(C(tl))d < 0 for t > 0
dt<

21



which indicates that corrective action should never be taken, i.e.,

t = M. This is intuitively reasonable since D > 0 implies that the

cost of corrective action is high relative to the coat of having

defectives in the lot when the emergency occurs.

It is easily seen that the case that A 5 can not occur ifIte

D < 0. Therefore, the only remaining case is D = 0. For this case,

the critical equation becomes

(cD+ 'A+9* C) e-1L 3 [1 e't'~ c ] = 0

But this equation has no positive root since

CD + e CR < + D = 0

since K > 0. It is similarly verified that, for this case,

)'- -Ot 2 -P 1 I.Lte

dt E+(t 1 ) D 8 ( "ie ("te "t12

< 0 for tI > 0

Therefore, corrective action should never be taken.

The general conclusion is that the t 1  which minimizes E{C(tI)

is the positive root of the critical equation if a positive root exists;

if the positive root exists, it will be unique; if it does not exist, t 1

should be infinite, i.e., never take corrective action.
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5. Solution for Certain Quadratic D(n) and Linear R(n) Functions

Assume that D(n) = CD n2. This should serve as a suitable

approximation for the type of situation in which the availability of

non-defective items in the lot can partially compensate for the defective

items, so that the imputed cost of having only a few defectives in the

lot is relatively low but this cost increases very rapidly as the number

of defectives increases. Assume, as before, that R(n) = K + CR.n,

where K > 0.

Proceeding as before, it needs to be recalled that the second

moment of the binomial distribution described by the P (t) probabil-n

ities is

(N2  N) (1 -e-(t+to))2 + N(l e-'(t+to)0

N
The E D(n)Pn(t) summation is analogous to finding this second moment.

n=o

Thus,

N N n N-n

SD(n)Pn(t) = 'nC ( ) (l-eL(t+to) (eg(t+to)
n=o n=o

= CD [(N2 - N) (le-•(t+t°))2 + N(l+e-(t+to))]

= NCD [(N-l)e + (l-2N)e -(t+to) + N]

Therefore, proceeding in a straight-forward fashion and simplifying,
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EJ ~~D(n)P n(t)e e dt

NC NOD ~ e Wt0ý1 t1(211+e) + (12 e Vt0 (i-e-t 1(v+6) + N(1 e 1)]

Hence, after considerable simplift-cation,

d ý E C ~ t ) )j e e O t 1 e4 L t 0 Q
dt -et 2

where

Q C (N -l) e -( 2 )2 1 e -t 1

+ D(1-2N )eg 1 1- e -t t1)

K N e t + C R + C ( N -1 ) e -It o ) +9( -2 ) e

Thus, the critical equation is

Q=O0

24



Assume that t is a positive root of the critical equation. Thus, if

dt 2 ýEC(tl)} * > 0,

then EC(tl)) is aet ta local minimum.

d E(C(t9J) ee'- 1 Ne 4t0d

__ ~Ne0  od

Hence,

d2  (E -etlet
dt2 E(C(tl) = ee Ne dQ

dt1tl=t 1 ý1e -etI * 2 dtI tl=tI1

Thus, if

dQ >o
dtl1 tl1=tI 1

then E(C(tl)) is a local minimum. After considerable simplification,
1

dQ can be written as
dt2

25



"!"-14 tl 11 (N1

dtI i ) 2CD(N-I) (l- t + CD- CR

let ti be the value of tI such that

2CD(N-1) ( 0l(t°+t{)) + CD = CR (- "

Then, clearly, if t1 > 0, then

dQ < 0, if t < t
dt 1  1

dQ_ > 0 ,if tI > tit.
dt>1 1

It now needs to be pointed out that Q is continuous and that Q < 0

at tI = 0. Therefore, there exists E > 0 such that

ddt (E(C(t)1) < 0 if 0 < t < Et1

Hence, since < 0 if t > 0 and t < t
dte 1 1s1

d (E(C(tl1 < 0 if tI > 0 and t <ti

26



Therefore, if t1 > 0 and

d (E(C(t ))) _ 0
dt 1

then t > t{, and hence, > 0. The implication is that if t1dt 1

is a positive root of the critical equation, then E(C(tl)) must be a

local minimum. Furthermore, since > 0 for t > 0 and t > tIdtI tI 1n I .t',

t must be a unique positive root. Additionally, t can easily be

estimated as closely as desired. Merely proceed by trial and error

while remembering that tI > 0 and tI > tl, and that !L > 0 ford t 1

t > 0 and t > t' . Thus, lower and upper bounds for t, can

immediately be established and then revised closer and closer to the
*

true value of t . The one exception to this procedure would arise

when there does not exist even the single positive root of the critical

equation. This could happen if and only if

d (E(C(t ))) < 0 for t > 0
dt1

which in turn occurs if and only if

D(_e t K + + + CD (1-2N) < 0.
(N-l)e 0 

- [+~t eC (N-l)e 0 CD 9iiT1

Ne o e2

27



For this case, the obvious recommendation is t , i.e., never take

corrective action. The final important implication of the results is

that, if the unique positive root t exists, then since Q < 0 if

* * d (•~l) a
0 < t < t* and Q> 0 if t > t1 , and since dl (E(C(t )) has

the same sign as Q for t > 0, E(C(t 1 )) must be a global minimum.

In summary, if

- 9t -4C , De t
0 D (N-l)e o - Lt + + CD (N-l)e 0  + CD(1-2N) (ej < 0 ,CDNe 0 e "0t

never take corrective action. Otherwise, select t1 = tl, where t1

is the necessarily unique positive root of the critical equation, Q = 0.

This policy will minimize E(C(t 1 ))}. Before solving for tl, determine

if

12(N-1) (-e-ýto) + 1]1 C

If so, then > 0 for t > 0. If not, determine t{, or at least a
dt1  1

lower bound to t{, where

2CD(N-1) (- o4~~t) + CD R(!

in which case t d > 0 for t > ti. In either case,1 > t! and dt1 1 1

Q < 0 for tI = max (0, ti). Then, letting max (0, tj) be an initial
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lower bound for t and using the fact that S > 0 for1
1 ~dt 1

t > max (0, tl), proceed by trial and error or by more systematic

numerical methods, to converge upon the true value of t to whatever

accuracy is desired.

6. Example

A certain company in the electronics industry uses an assembly line

for assembling one of its products. One of the initial inputs of this

assembly line is a certain kind of electronic tube. This tube arrives

from an earlier set of operations in lots of 100, usually at a uniform

rate of ten lots each week. Unfortunately, due to a number of reasons

such as the breakdown of certain equipment, an occasional lot is

prevented frombeing delivered when needed. It has been observed that

the failure of the lot to arrive on schedule is a seemingly random

event in time, and that the average time between these events is 20

weeks. The consequence of not having any of these tubes available is

that the assembly line must shut down. To safeguard against this very

serious situation, a spare lot of the tubes is kept in reserve at a

centralized storage station. Thus, whenever the lot in the regular

flow of production is delayed or rejected, the spare lot is immediately

removed from storage and used in place of the regular lot. The new spare

lot is then produced during overtime work if necessary.

It has been observed that, ordinarily, the proportion of the tubes

which are produced defective is negligible. From previous experience,

both within and outside the company, it is estimated that the storage

life of this tube is exponentially distributed with a mean of 180 weeks.
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Therefore, to o ieeagur-d against using the spare lot when it contains an

excessive nvmbkromefdeffectlves, it is felt that the lot should periodi-

cally be scree:eeed sad the defective tubes replaced with non-defective

tubes. Howeve:9,er, I 1t is not known Just how often this corrective action

should be takerceso-i as to minimize the total expected cost.

It is est:Mtint ;-ed that the cost of inspecting the entire lot is

$100.00. The r -npl _acements for the defective items would be produced

and inspected o. dei ng o-vertime work, which would involve a cost of

$10.00 per Itese-e i Sinc-e there is not enough time to inspect the lot

when it is cal:eL Into service, any defective tube present would be

assembled into o0the corzresponding item of the product. The result would

be that the assa.umb-.led jroduct would not test out; it would then be

checked, partiaHOl - dismassembled, the tube replaced, and reassembled.

The total extrseracou.st iuivolved for each defective tube is approximately

$100.00.

This data xI1 a suff:cient to permit the use of the results presented

earlier to provovlde a s clution. The cost functions clearly are

D(n) = 100n cad EER(n) = 100 + 10n. Letting the unit of time be the

week, P = 1/i382 eand e = 1/20. Since the proportion of the tubes

which are prodwused deftctive is negligible, t = 0. Thus, in the-0

notation of thelineirmear model of Section 4, A = 80 and711

(A - -) = . fernilng to Figure 4.1, it is seen that 4tI shoulde 7111
lie between 0..O. end 0.10. Linearly interpolating between the two

curves, ýLtI: =IOE5. Therefore, tl, the elapsed time between

consecutive insespctJtIons of the same lot in storage, should be about

9.9 weeks.
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7. Discussion of Results

All of the foregoing results have been based on the assumption that

the particular exponential distribution of storage life is known.

Therefore, the following statement may at first seem surprising and

contradictory. It is that the widest application of these results

probably should be to the situation where the distribution of storage

life must be judged to be unknown, at least at the initiation of the

program. To understand why, it should be recognized that, for this

situation, a program of surveillance sampling would or should be

conducted which would have the effect of gradually identifying the

underlying distribution of storage life. Thus, it is entirely feasible

that, by the time corrective action should be taken, the surveillance

sampling can sufficiently identify the underlying distribution of

storage life to signal the need for this corrective action with the use

of the foregoing results. In this connection, it should be noticed that

when the optimum t was being solved for, it was really t 1 that was

4 -ý' (t 1 +to)
being found for a particular ratio. . Thus, since l-e is

the expected fraction defective in the lot at time tl, and since lt°

-.Lt
is chosen so that 1-e 0 is the expectied initial fraction defective,

the result of the analysis is to determine the value of expected fraction

defective at which corrective action should be taken. Hence, when

surveillance sampling indicates or predicts approximately this fraction

defective while estimating the corresponding ratio •, then corrective

action would appropriately be taken at the predicted time. In summary,

whenever the particular distribution of storage life is unknown, but

assumed to be exponential, use surveillance sampling in effect to estimate
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the particular distribution and then apply the corresponding results.

One limitation of the results is that the distribution of storage

life is assumed to be exponential. However, this should at least serve

as a useful approximation in a large proportion of the cases. Even when

the distribution of storage life is known to be not nearly exponential,

the results might be enlightening and instructive. It should also be

recognized that, especially when corrective action will consist of

replacing the lot, only the early part of the distribution of storage

life may really need to resemble the exponential distribution.

Another limitation of the results is that solutions are readily

obtainable only for a limited number of D(n) and R(n) functions.

Fortunately, among these functions are the extremely important ones

studied in the preced'.z sections. The R(n) function studied appears

to be at least a reasonable approximation for most situations of interest.

The two D(n) functions studied appear to be reasonable approximations

for the two primary types of situations. One of these types is where

the imputed cost of defective items in the lot at the time of the

emergency is roughly proportional to the number of such defectives.

This would occur, for example, where the results of the use of the items

in the lot are relatively independent. The other primary type of

situation is where the imputed cost of defectives when the emergency

occurs increases rapidly as the number of these defectives increases.

This would occur, for example, where a few defectives in the lot would

be easily compensated for by the many non-defectives but the usefulness

of the lot would become seriously compromised by the presence of a

relatively large number of defectives. The results derived for the
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quadratic D(n) function should be useful for this type of situation

either as a preliminary result requiring adjustments or as a final

solution. The linear D(n) function results should similarly be

useful for the first type of situation discussed.

The model does not consider the possibility of the obsolescence of

the items in storage or of the termination of the time in which the

relevant emergency can occur. However, unless such an occurrence is

expected soon, it does not appear that the accuracy of the results

would be affected significantly.

8. Conclusions

The results presented here should be helpful in many cases in

determining when corrective action should be taken because of the

deteriorating quality of a lot in storage. The model does assume the

knowledge of considerable information, including the common distribution

of storage life of the items in the lot. However, it appears to be

feasible to gather and refine this information by surveillance sampling

while simultaneously applying the indicated results. Another important

limitation is the assumption that the distribution of storage life is

exponential. Nevertheless this assumption should be entirely

appropriate in many cases and a useful approximation in many others, at

least for instructive preliminary analysis. One of the sets of cost

functions analyzed and shown to lead easily to a solution should be

appropriate for most cases of interest.
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